Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Vaccines (Basel) ; 10(3)2022 Mar 14.
Article in English | MEDLINE | ID: covidwho-1742765

ABSTRACT

Residents of long-term care facilities (LTCFs) have been dramatically hit by the COVID-19 pandemic on a global scale as older age and comorbidities pose an increased risk of severe disease and death. The aim of the study was to assess the quantity and durability of specific antibody responses to SARS-CoV-2 after the first cycle (two doses) of BNT162b2 vaccine. To achieve this, SARS-CoV-2 Spike-specific IgG (S-IgG) titers was evaluated in 432 residents of the largest Italian LTCF at months 2 and 6 after vaccination. By stratifying levels of humoral responses as high, medium, low and null, we did not find any difference when comparing the two time points; however, the median levels of antibodies halved overtime. As positive nucleocapsid serology was associated with a reduced risk of a suboptimal response at both time points, we conducted separate analyses accordingly. In subjects with positive serology, the median level of anti-S IgG slightly increased at the second time point, while a significant reduction was observed in patients without previous exposure to the virus. At month 6, diabetes alone was associated with an increased risk of impaired response. Our data provide additional insights into the longitudinal dynamics of the immune response to BNT162b2 vaccination in the elderly, highlighting the need for SARS-CoV-2 antibody monitoring following third-dose administration.

2.
BMC Geriatr ; 22(1): 191, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1733659

ABSTRACT

BACKGROUND: The impact of coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) on residents of long-term care facilities (LTCFs) has been dramatic on global scale as older age and comorbidities pose an increased risk of severe disease and death. METHODS: Aim of this study was to evaluate SARS-CoV-2 Spike-specific IgG (S-IgG) antibody titers in 478 residents and 649 health care workers of a large Italian long-term care facility two months after complete vaccination with BNT162b2. Associations among resident-related factors and predictors of humoral response were investigated. RESULTS: By stratifying levels of humoral responses, we found that 62.1%, 21.6%, 12.1% and 4.2% of residents had high (>1,000 BAU/ml), medium (101-1,000), low (1-100) and null (<1 BAU/mL) S-IgG titers, respectively. Residents with documented previous COVID-19 and those with SARS-CoV-2 nucleocapsid-specific IgG (N-IgG) positive serology showed higher level of serological response, while significant associations were observed for cancer with suboptimal response (p = 0.005) and the administration of corticosteroid for suboptimal response (p = 0.028) and a null one (p = 0.039). According to multivariate logistic regression, predictors of an increased risk of null response were advanced age (Odd ratio, OR: 2.630; Confidence interval, CI: 1.13-6.14; p = 0.025), corticosteroid therapy (OR: 4.964; CI: 1.06-23.52; p = 0.042) and diabetes mellitus (OR:3.415; CI:1.08-10.8; p = 0.037). In contrast, previous diagnosis of COVID-19 was strongly associated with a reduced risk of null response to vaccination (OR:0.126; CI:0.02-0.23; p < 0.001). CONCLUSIONS: SARS-CoV-2 specific antibodies in elderly individuals should be consider when deciding the need of a third dose of vaccine for prevention of reinfections in LTCFs despite the maintenance of barrier measures.


Subject(s)
BNT162 Vaccine , COVID-19 , Aged , Antibody Formation , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Long-Term Care , Nucleocapsid Proteins , SARS-CoV-2
3.
Viruses ; 12(8)2020 07 24.
Article in English | MEDLINE | ID: covidwho-670832

ABSTRACT

The aim of this study is the characterization and genomic tracing by phylogenetic analyses of 59 new SARS-CoV-2 Italian isolates obtained from patients attending clinical centres in North and Central Italy until the end of April 2020. All but one of the newly-characterized genomes belonged to the lineage B.1, the most frequently identified in European countries, including Italy. Only a single sequence was found to belong to lineage B. A mean of 6 nucleotide substitutions per viral genome was observed, without significant differences between synonymous and non-synonymous mutations, indicating genetic drift as a major source for virus evolution. tMRCA estimation confirmed the probable origin of the epidemic between the end of January and the beginning of February with a rapid increase in the number of infections between the end of February and mid-March. Since early February, an effective reproduction number (Re) greater than 1 was estimated, which then increased reaching the peak of 2.3 in early March, confirming the circulation of the virus before the first COVID-19 cases were documented. Continuous use of state-of-the-art methods for molecular surveillance is warranted to trace virus circulation and evolution and inform effective prevention and containment of future SARS-CoV-2 outbreaks.


Subject(s)
Betacoronavirus/classification , Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Bayes Theorem , Betacoronavirus/isolation & purification , COVID-19 , Epidemiological Monitoring , Genome, Viral , Humans , Italy/epidemiology , Likelihood Functions , Molecular Epidemiology , Molecular Typing , Mutation , Phylogeny , SARS-CoV-2 , Time Factors , Whole Genome Sequencing
4.
J Med Virol ; 92(9): 1637-1640, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-87346

ABSTRACT

This report describes the isolation, molecular characterization, and phylogenetic analysis of the first three complete genomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolated from three patients involved in the first outbreak of COVID-19 in Lombardy, Italy. Early molecular epidemiological tracing suggests that SARS-CoV-2 was present in Italy weeks before the first reported cases of infection.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Genomics , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , Computational Biology/methods , Genomics/methods , Humans , Italy/epidemiology , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL